Identification of Markov Matrices of Milling Models

نویسنده

  • Jayanta Chakraborty
چکیده

Detailed modeling of a grinding mill can be achieved through Markov chain models without involving lengthy computations. However, estimation of the key parameters of the model, elements of the Markov transition matrix, using observable quantities is not trivial. This powerful modeling tool can find wide applicability in operation and control of industrial mills if this set of parameters can be estimated using suitably observed quantities. In this study we model a complex multiregion mill using Markov chain and propose a general technique for estimation of the Markov transition matrix for breakage problems. This technique estimates the transition matrix from observed evolution of particle size distributions in various regions of the mill, based on extracting spectral information of the transition matrix from the data. It has been shown in this study that a specific grouping of states can lead to lower triangular block structure of the Markov transition matrix for a breakage problem. Detailed analysis of such a block matrix reveals that simple semilogarithmic plots of a set of observed quantities can be used in order to extract the spectral information of the transition matrix which in turn can be used to reconstruct the Markov matrix. A numerical example has been presented to illustrate various ideas which demonstrate that the proposed technique can be used successfully to estimate the Markov transition matrix very accurately from observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Line Identification of the First Markov Parameter of Linear Multivariable Plants (RESEARCH NOTE)

In this paper three methods for on-line identification of first markov parameter at linear multivariable plants are presented. In these methods input-output data are used far the on-line identification of the first markov parameter.

متن کامل

A Markov Model for Performance Evaluation of Coal Handling Unit of a Thermal Power Plant

The present paper discusses the development of a Markov model for performance evaluation of coal handling unit of a thermal power plant using probabilistic approach. Coal handling unit ensures proper supply of coal for sound functioning of thermal Power Plant. In present paper, the coal handling unit consists of two subsystems with two possible states i.e. working and failed. Failure and repair...

متن کامل

The Rate of Rényi Entropy for Irreducible Markov Chains

In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.

متن کامل

Estimating Multivariate Latent - Structure Models

A constructive proof of identification of multilinear decompositions of multiway arrays is presented. It can be applied to show identification in a variety of multivariate latent structures. Examples are finite-mixture models and hidden Markov models. The key step to show identification is the joint diagonalization of a set of matrices in the same nonorthogonal basis. An estimator of the latent...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009